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Report at HEAC 1971

The discovery in the early '60's at the Princeton-
Stanford ring of what was thought to be the resistive wall
instability brought the realization that circular accelerators
are fundamentally unstable devices because of the interac-
tion of the beam with its environment. Stability is achieved
only through Landau damping and/or some external damping
system.

* 1965, Priceton-Stanford CBX: First mention of an 8-pole magnet
e Observed vertical resistive wall instability

ELECTRON » With octupoles, increased beam current from ~5 to 500 mA

BEAM
CBX layout (1962) mszo*ﬁ] * CERN PS: In 1959 had 10 octupoles; not used until 1968
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! "] ¢ At 102 protons/pulse observed (1% time) head-tail instability.
tn Octupoles helped.

® e Once understood, chromaticity jump at transition
HAM 3/
\ A J ' was developed using sextupoles.

; / e More instabilities were discovered; helped by octupoles
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"How to make a high-intensity machine?

(OR, how to make a high-intensity beam stable?)

Landau damping - the beam’s “immune system”. It
is related to the spread of betatron oscillation
frequencies. The larger the spread, the more stable
the beam is against collective instabilities.

External damping (feed-back) system - presently
the most commonly used mechanism to keep the
beam stable.

Can not be used for some instabilities (head-tail)
Noise
Difficult in linacs



Most accelerators rely on both

o LHC

e Has a transverse feedback system
e Has 336 Landau Damping Octupoles
e Provide tune spread of 0.001 at 1-sigma at injection

e In all machines there is a trade-off between
Landau damping and dynamic aperture.
. ...But it does not have to be.



“Today’s talk will be about...

... How to improve beam’s immune system (Landau
damping through betatron frequency spread)

e Tune spread not ~0.001 but 10-50%

What can be wrong with the immune
system?

e The main feature of all present accelerators - particles have
nearly identical betatron frequencies (tunes) by design. This

results in two problems:

1. Single particle motion can be unstable due to resonant
perturbations (magnet imperfections and non-linear elements);

. Landau damping of instabilities is suppressed because the
frequency spread is small.



To create the tune spread, we add non-linear
elements (octupoles) as best we can.
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1 octupole in a linear 2-D lattice

Typical phase space portrait:
‘ ' ' ' / 1. Regular orbits at small amplitudes
2. Resonant islands + chaos at larger
amplitudes;

L o

Are there “magic” nonlinearities that
create large spread and zero resonance
strength?

-

The answer is — yes
. - - (we call them “integrable”)

-aa -02s =) oas 23

H=F(J,.J,)




/Eurant-Snyder Invariant

Equation of motion for z'+K(s)z =0,
betatron oscillations Z =X O0ry

Courant and Snyder found a conserved quantity:

. e
J_2/3(S)(Z +( 5 z—(s) )]

where (\/E) +K(s)\/ﬁ=\/;?3

H(J,,J,))=0,J, +0,J,

-- auxiliary equation

ik y --are Courant-Snyder integrals of motion
oH > oH
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W -- betatron frequencies
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unction of actions:
good or bad?

//Linearf

H(J,,J,)=0,J, +0,J,

* It is convenient (to have linear optics), easy to model, ...but it is
NOT good for stability.

* We did not know (until now) how to make it any other way!



“First non-linear accelerator proposals
(before KAM theory)

* In a series of reports 1962-65 Yuri Orlov has proposed
to use non-linear focusing as an alternative to strong
(linear) focusing.

e Final report (1965):

FUNDAMENTAL PROPERTIES OF
NON-LINEAR FOCUSING*

V. V. VecHestavov and Yu. F. OrLov

(Received 23 July 1965)

Abstract—An analysis has been made of the fundamental properties of non-lincar focusing taking the
simple example of non-linear focusing in a symmetric magnetic field of the fifth degree. The dimen-
sions of the first stability region with regard to small non-linear z-oscillations are determined, The
influence of r-z-resonances was studied and also the maintenance of stability when allowing for
adiabatic damping with the help of external or mutual r- and z-phase stabilization, It was found that
mutual phase stabilization arises in the region of & r-z-resonance.

A numerical and partly analytical study of these effects has been made.
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McMillan nonlinear optics

* In 1967 E. McMillan published a paper

SOME THOUGHTS ON STABILITY
IN NONLINEAR PERIODIC FOCUSING SYSTEMS

Edwin M. McMillan

September 5, 1967

* Final report in 1971. This is what later became known

as the “McMillan mapping”:
X; = Pig . Bx” + Dx
p==x 4 (%) Ax* +Bx+C
Ax’p’ + B(xzp +xp° )+ C(x2 +p° )+ Dxp = const

If A =B = 0 one obtains the Courant-Snyder invariant
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~ McMiillan lmpmﬁg%

%)
- Ax” + Bx+C

e At small x: f(X)%—Ex

0 1

: : D 1 D
Linear matrix: |-1 -= Bare tune: ——acos|-—
'S 27T 26

* Atlarge x: f(x)—0 A=1,8=0,=1,D=2

4

0
Linear matrix: (_1 o) Tune: 0.25°

Pnx O

® Thus, a tune spread of 50-100% is

possible!
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What about 2D optics?

How to extend McMillan mapping into 2-D?
Danilov, Perevedentsev found two 2-D examples:

* Round beam: xp, - yp, = const

1. Radial McMillan kick: r/(1 + r?) -- Can be realized with
an “Electron lens” or in beam-beam head-on collisions

>. Radial McMillan kick: r/(1 - r?) -- Can be realized with
solenoids (may be useful for linacs)

In general, the problem is that the Laplace equation
couples x and y fields of the non-linear thin lens

13



" Are all integrable systems
stable?

* No, some are better than others



Long-term stability

* The first paper on the subject was written by Nikolay Nekhoroshev in 1971

F ll}ussm%ath.s ur;e:fzs-iz(f 9(7‘79)7?’ 616— 6 1.1 Nearly-integrable Hamiltonian systems. Perpetual stability and stability
rom Uspeki Mat. Nauk 52 T during finite intervals of time. In this article we investigate the behaviour of
the variables / in the Hamiltonian system of canonical equations

2 * oH

o P Gl
@ al
AN EXPONENTIAL ESTIMATE OF THE with the Hamiltonian )
TIME OF STABILITY OF NEARLY-INTEGRABLE (1.4) H=Hy(I)+eHy (I, 9),
HAMILTONIAN SYSTEMS where €& 1 is a small parameter, the perturl?ation e, U, ¢) is
N. N. Nekhoroshev ?sz;:lo_d_“? ;r; «p = @1, ..., ¥, and [ is an s-dimensional vector,
e He proved that for sufficiently small ¢ [1(6) = 1(0)] < Ree” for |t| < T.exp (™)

provided that H (I) meets certain conditions know as steepness

e Convex and quasi-convex functions H () are the steepest
* An example of a NON-STEEP function is a linear function
Hy(I}, 1) =vil +v,1,
* Another example of a NON-STEEP function is

HO(]13[2) =112 _]22

15



BT e % ' .“ .
Non-linear Hamiltonians

We were looking for (and found) non-linear 2-D steep
Hamiltonians that can be implemented in an accelerator

Other authors worked on this subject recently: J. Cary, W.
Wan et al., S. Danilov, E. Perevedentsev

e The problem in 2-D is that the fields of non-linear elements
are coupled by the Laplace equation.

* An example of a steep (convex) Hamiltonian is

but we DO NOT know how to implement it with magnetic
fields...

16



What are we looking for?

We are looking for a 2-D integrable convex non-linear
Hamiltonian, H,(,,1,)=h(I,,1,)

e h(l,l,)=const --convex curves
Iz N\

\\\
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—QOur approach

See: Phys. Rev. ST Accel. Beams 13, 084002

Start with a round axially-symmetric LINEAR focusing

lattice (FOFO)

Add special non-linear potential V(x,y,s) such that

AV(x,y,5)=AV(x,y) =0

Sun Apr 25 20:48:31 2010 OptiM- MAIN: - C:\Documents and Settings\nsergei\My Documents\Papers\invariants\Round

20

BETA_X&Y[m]
T

"V(x,y,s)

V(x,y,s)

V(x,y,s)

V(x,y,s)

V(x,y,s)

0

BETA_X

1 1
DISP_X DISP_Y

40

DISP_X&Y[m]



_
Special time-dependent potential

Let’s consider a Hamiltonian

2 2 2 2
. L Y* Y
= + K(s) + +V(x,y,s
where V(x,y,s) satisfies the Laplace equation in 2d:

AV(x,y,s)=AV(x,y)=0

Z
WA =

In normalized variables we will have: R IOK
- py = B - /32();,
Pt Py
Hy =220, . ;yN + B ey B@), vy B@), 5@,

Where new “time” variableis  (s) = f _ﬁd(s )
S
0
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Four main ideas

Chose the potential to be time-independent in new

riabl 4 p .
anaes HN=pN pyN+xN+yN+U(xN,yN)
2 2
4 B(S) o o o
S At Tinsert
Element of periodicity c Lo
L—sk\L-s
B(s) = ( )2
o
2

<

L
Find potentials U(x, y) with the second integral of
motion

Convert Hamiltonian to action variables #,(/,,1,) = i(1,,1,)
and check it for steepness -



How to

15
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make the Hamiltoni

time-independent?

N+ yN N N
. 2p 5 ;y LB, ﬁ(w ),y B@),5@),
» Example: quadrupoles V(x,y,s)= (> -»*)

/a’(s)z
U(XN,yN) = Q(szv _yjz\f]
piN +p§N +x12v +y]2\7
94 2

HN= +qx]2v_y]2v]

-

B

Integrable but still linear...
uadrupole

mplitude

a(s)

0.5

<' a
1

(s)
\ﬁ e Tune spread: zero

Tunes: V? = V(? (1+2q)
v, =v;(1-2q)

0 0.2 04 06

08
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Integrable 2-D Hamiltonians

Look for second integrals quadratic in momentum

e All such potentials are separable in some variables
(cartesian, polar, elliptic, parabolic)

e First comprehensive study by Gaston Darboux (1901)
So, we are looking for integrable potentials such that

+ 2 2
H=px2py+x ;y +U(x,3)

Second integral: 1= Api +Bp.p, + Cpi +D(x,y)

A=ay’ +c°,
B =-2axy,

2
(. =ax

22



Darboux equation (1901) @&

e Leta=0and c =0, then we will takea =1
xy(Uxx Uyy)-l-(y e )./ +3yU, -3xU, =0

® General solution
f(&)+ g(??)

U(x,y) = =

\/(X+C)2+y +\/(X C)2+y
\/(X+C)2+y —\/(x C)2+y

¢:[1,o], n:[-1, 1], fandg arbltrary functions
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The second integral

The 2"d integral

, f(Em* +gm)E?
E*-n’

I\, y,p..p, )- (xz?y _yp e pl 420

Example: U(x,y) =% x* + yz)
f1(§)=%§2(€2 -1) gl(n)=%n2(1—n2)

I\, y,p.,p, )= (xpy —ypx) +czp§ +c’x’
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Laplace equation

Now we look for potentials that also satisfy the
Laplace equation (in addition to the Darboux

equation):
U U =0

1. 1eY eformd @ family,yeigh 4 free parameters (b, ¢, d, t):
g,(n) = UW(Z? +tacos(n))

f (E) +8 (77) The most interesting: d=0 and 5 = —Et
§2 B 772 2

U(x,y) %



s sue tU(x,y)  This potential has two adjustable parameters:
2 2 t — strength and ¢ — location of singularities
Multipole expansion (electrostatic case):
t ) i e l6 R
For|zl<c Ulx,y)=—Re| (x+iy)" +—(x+iy) + (x+1iy) + (x+1y)” +...
( ) ¢* ( 3¢? 15¢* 35¢°
Forc=1
[t] < 0.5 to provide linear stability for small
amplitudes

For t > 0 adds focusing in x

( Small-amplitude tune s:

l i

v, =+1-2¢

26




~—— © Magnetostatic case ' |

-0.5 0 0.5

! Wi 2 v 8 . \6 16 . \8
< Ux,y)=—Im| (x+iy)" +—(x+1iy) + (x+1iy) + (x+1y)° +...
Forjzj<c Ulx.y) > (( 0 —ni o —

27



~~ Conve

* This Hamiltonian is convex (steep)

* Example of tunes for t = 0.4

VI(JD O)
2 / AR
: ﬂ/ _______________ \/1_ +2t ______
1
UU 02 04 06 08
J1,

For t -> 0.5 tune spreads of ~ 100% is possible

]

038

0.6

0.4

02

_\*‘\\‘§§>\‘§____d/5¢//////%/f

x Hamiltonian

VZ(Oa JZ)
/
N1-=2t
02 0.4 06 08
»
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How to realize it?

of periodicity.

Need to create an element 4 p/q
-k 1

0

0

e The T-insert can also be

-1
k
0
0

0
-1

0

0

0
0
-1
k

0

0

0
-1

0
0

<

which results in a phase advance o.5 (180 degrees) for the T-

insert.

e The drift space L can give the phase advance of at most
0.5 (180 degrees).

e Beam size should not be small - particles need to

“sample” nonlinear fields.

29
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How to make these elements?

Proposal 1: custom-built magnet

Proposal 2: multipole expansion

/“ v > N
- A A - \ \ \
l'. / ./ /" ,A" 7 g b N \ \ \
! r‘ i, \ \ "x A
| / / ul | e AW\ \ \
| | f A /.
l I || || ‘ l f '

I I \ | | 1y [ | / |
| '.ll 1 \.' ,-‘ |' .‘Il xlll ’
\ / ]

30



/

~—Non-linear elements section

* Number of elements per section: 20 — 30

* Section length: 2 -3 m

ent i i ent

Quadrupole component strength (T/m)

0.3

0.25

0.2

0.15

0.1

0.05 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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e- Energy

Circumference
Dipole field 0.5T

Betatron tunes Qx=Qy=3.2
(2.4 t0 3.6)
Radiation damping time  1-2s
(107 turns)

Equilibrium emittance, 0.06 um
rms, non-norm

Nonlinear lens block

- Length 2.5m
Number of 20
elements

Element length o.1m

1 1 1
DISP_X&Y[m]

Max. gradient 1 T/m

Pole-to-pole ~ 2 cm
distance (min)




New cryoplant and
horizontal cryomodule
test stands
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y (m)

-0,005 F

much tune sprea

0,005

N
L

-0,01

-0,01 -0, 005 0 0, 005

Cc=10 mm
pipe radius = 7 mm
beam within r=5 mm

0,01

0,05

0,045

0,04

0,035

0,03

0,025

0,02

0,015

0,01

0,005

0

0.5

i
gl

Dipole moment spectrum
tracking one cell Q_=0.8 8Q
0Qy=0.15, 6Qx=0.06

with 4 cells -> 6Qy=0.45, 0Qx=0.24

IIlEi)(

0Q, . is determined by phase advance in drift. Maximum is 0.5
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- How much tune sprea

y (m)

0,04

0,03 F

0,02 F

0,01 |

-0,01 F

-0,02 |

-0,03 |

-0,04

-0,01 -0,005 0 0,005
x {m)

C=10 mm
pipe size x=5 y=35 mm
beam within x=2 mm

0,01

: %
; Y
g —e h.L»gA. bt e
0.5 0.6 0.7 0.8 0.9

Dipole moment spectrum
tracking one cell Q,=0.8 8Q,,,=0.3
0Qy=0.25, 0Qx=0.12

with 4 cells -> 6Qy=1, 8Qx=0.48
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- How much

y (m)

tune spread:

-0,01 F

-0,02 |

-0,03 |

-0,04

-0,01 -0,005 ] 0,005
x {m)

C=10 mm
pipe size x=5 y=35 mm
beam within x=2.5 mm

0,01

0,045

0,04

0,035

0,03

0,025

0,02

0,015

0,01

0,005

Dipole moment spectrum
tracking one cell Q,=0.8 8Q),,=0.5
0Qy=0.5, 0Qx=0.2

with 4 cells -> 6Qy=2, 6Qx=0.8
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- Effects of imperfections

0,01 0,01

0,005 0,005 F

y (n)
<
y (n)
o

-0,005 -0,008 f

-0,01 -0,01
-0,01 -0,008 0 0,005 0,01 -0,01 -0,008 0 0,005 0,01

€=10 mm Stability is preserved with
p1p€ Tad}“ﬁ = 7Ly *Transverse misalignments r.m.s. up to 0.5 mm
beam within r=5 mm *Synchrotron oscillations og=0.001, C=-15
0Qy=0.4, 0Qx=0.2 *Bx/Py difference up to 10%

*uxX+WUy=+0.5 up to 0.01

*Sextupoles in the arcs DAx=c
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- Current and-Proposed-Studies”

~ Numerical Simulations Possible Experiments at Test
Nonlinear lenses implemented in a Ribemonstrate large betatron tune
multi-particle tracking code (MAD- T
X and PTCQ) P
Studied particle stability Demonstrate part of the beam
o Effects of imperfections (phase crossing integer resonance
:g::;ltcaeglle)eta-functlons, etc.) - Map phase space with pencil beam

. by varying an injection error
e Synchrotron motion - acceptable Y alyulp )

e Number of nonlinear lenses - 20 All 1 ,
Simulated observable tune spread B A —
are stable! A0
To Do: A=04

e Ring nonlinearities
e Chromaticity

Spectrum of horizontal dipole moment
Q,=0.9%4=3.6

5000 particles
8000 revolutions W/

Fourier Amplitude

6 . .
But up to 10° revolutions simulated 05 0.6 - 08 0.9

Tune
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Fermilab interests

Academic:
* NO resonances
e long-term stability at large amplitudes
e large tune spreads - Landau damping
Practical:

e Electron machines

o lar ic apertures

e Proton machines

« super-high currents Relevant to DOE/HEP

- instability damping

\.§- - e
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—Conclusions

We found first examples of completely integrable
non-linear optics.

e Tune spreads of 50% are possible. In our test ring
simulation we achieved tune spread of about 1.5 (out of

3.6);
Nonlinear “integrable” accelerator optics has
advanced to possible practical implementations
e Provides “infinite” Landau damping

e Potential to make an order of magnitude jump in beam
brightness and intensity

Fermilab is in a good position to use of all these
developments for next accelerator projects

e Rings or linacs
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Extra slides




" Example of time-independent
Hamiltonians

* Octupole . =
Bsy\ 4 4 2
S 7P I 157
T

1 1 k
H =—(pf +p§)+—(x2 + ) +—b* +y° —6x2y2)
2 2 4
This Hamiltonian is NOT integrable

Tune spread (in both x and y) is
limited to ~12%
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Example of exactly.integrable —

/. [ ) [ ]
~ nonlinear Hamiltonian
ot P \
Hy = 2B 00 g0 e JB@). v B@),5@),
i) 2h
. = (Yzy ); -
T ¥
7 N * This gives EXACT
N\ 2 : S
integrability C )
u | | 1=(pr—ypx)+2a ;2y+y2 Xy
A %ﬁ;\
- & * Not all trajectories encircle
- the singularity!
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l Spectrum of Ve—=o.905x4=3.62 I

| | | A=0 ——
A=01] —
A=02
A=04 ——
=)
=
:
g
g | l '
i M
L
e
0.5 0.6 0.7 0.8 0.9 1
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